
Functional programming in R
With the purrr package

Derek Hansen

9/18/2019

What is Functional Programming?

“Functional programming is a programming paradigm . . . that treats
computation as the evaluation of mathematical functions and avoids
changing-state and mutable data.” - Wikipedia

I Functions are like those in mathematics:
1. They always return the same output for a given input
2. No side-effects (e.g. modification of global variables)
3. Functions that satisfy (1-2) are called pure

I Functions are first-class objects which can be passed as
arguments to other functions (a.k.a. functionals)

I There is no changing state as the program runs; values are
assigned once as functions of other values and inputs

I Everyday example: Microsoft Excel (without any VBA
scripting!)

Why use functional programming?

I Through avoiding mutable state and composing pure functions,
an FP program is also a pure function of its input

I This makes FP programs. . .
I Modular
I Predictable
I Easier to test
I Avoid common pitfalls involving changing state (e.g. global

variables)

Why use functional programming?

Natural functionals in the FP paradigm include . . .

I map: (where f : X → Y)

((x1, ..., xn), f)→ (f (x1), ..., f (xn)))

I filter: (where f is a predicate function f : X → {0, 1})

((x1, ..., xn), f)→ (xi : f (xi) = 1)

I reduce: (where f is an operator function f : X × X → X)

((x1, ..., xn), f)→ f (x1, f (x2, f (x3, f (...))))

Functional Programming in R

I R is multi-paradigm: it does not strictly adhere to FP
principles, but it offers capability to use FP patterns

I Examples in base R include:
I Map, lapply, sapply, apply, vapply, mapply
I Reduce
I Filter

I The purrr package by Hadley Wickham et al improves the the
functional programming tools to R which are syntactically
consistent and type-safe.

Mapping
I map is pretty much equivalent to lapply, but has some

additional features
library(purrr)
my_sqrt <- function(x) sqrt(x)
str(map(c(1,2,3,4,5), my_sqrt))

List of 5
$: num 1
$: num 1.41
$: num 1.73
$: num 2
$: num 2.24
str(lapply(c(1,2,3,4,5), my_sqrt))

List of 5
$: num 1
$: num 1.41
$: num 1.73
$: num 2
$: num 2.24

Mapping

I If we want an atomic double vector instead of a list, the
map_dbl ensures we always receive that.

I sapply does the same thing in this particular instance, but we
can run into problems. . .

str(map_dbl(c(1,2,3,4,5), my_sqrt))

num [1:5] 1 1.41 1.73 2 2.24
str(sapply(c(1,2,3,4,5), my_sqrt))

num [1:5] 1 1.41 1.73 2 2.24

Problem: sapply is not type-safe!
I Example: Our colleague worked hard to make my_sqrt handle

any real number.
I They even overwrote the function my_sqrt to make the

transition seamless!
sqrt_general <- function(x) {

if(x >= 0) sqrt(x)
else return(paste0(sqrt(abs(x)), "i"))

}

my_sqrt <- sqrt_general
my_sqrt(5)

[1] 2.236068
my_sqrt(-5)

[1] "2.23606797749979i"

Problem: sapply is not type-safe!

str(sapply(c(1,2,3,4,5), my_sqrt))

num [1:5] 1 1.41 1.73 2 2.24
str(sapply(c(-1,2,-3,4,5), my_sqrt))

chr [1:5] "1i" "1.4142135623731" "1.73205080756888i" "2" ...

I This is a great way to propogate errors. We have no way to
guarentee whether sapply will return a “double” vector or a
“string” vector.

map_dbl is type-safe!

str(map_dbl(c(1,2,3,4,5), my_sqrt))

num [1:5] 1 1.41 1.73 2 2.24
try(str(map_dbl(c(-1,2,-3,4,5), my_sqrt)))

Error : Can't coerce element 1 from a character to a double

I The map_* family of functions allows us to explictly impose
which type we expect the output vector to be.
I They “return an atomic vector of the indicated type (or die

trying)” (documentation)

map_chr is type-safe!

map_chr(c(1,2,3,4,5), my_sqrt)

[1] "1.000000" "1.414214" "1.732051" "2.000000" "2.236068"
map_chr(c(-1,2,-3,4,5), my_sqrt)

[1] "1i" "1.414214" "1.73205080756888i"
[4] "2.000000" "2.236068"

I Suppose our colleague convinced our team lead that we should
work exclusively with strings to accomodate complex numbers

I We use map_chr to reflect that now we want the output to be
a character vector.

I No errors now because both doubles and characters can be
coerced to double.

map_* is type-safe!

I sapply implicitly coerces to an atomic vector in the most
general unit in the output for “convenience”, but this is very
prone to unexpected errors.

I Most of the time, it is better to be explicit to catch any errors
early and keep type stability.

I Can also use _lgl for logical, _int for integer, _raw for raw
type, _dfr and _dfc for data-table columns and rows.

Some more cool features of map - anonymous functions

I Can construct function in the argument using symbol notation
map_dbl(c(1,2,3,4,5), ~.x^2 + .x + sin(.x))

[1] 2.841471 6.909297 12.141120 19.243198 29.041076

Some more cool features of map - multiple arguments

I Can use map2_* for 2 argument functions; pmap_* for
n-argument functions

I The ith positional argument can be referenced with ..i syntax.
map2_dbl(c(1,2,3,4,5), c(5,6,8,9,11), ~.x^2 + .y^2 + sin(.x))

[1] 26.84147 40.90930 73.14112 96.24320 145.04108
pmap_dbl(list(1:5, 11:15, 21:25), ~..1 + ..2 + ..3)

[1] 33 36 39 42 45
pmap_dbl(list(1:5, 11:15, 21:25), function(x,y,z) x+y+z)

[1] 33 36 39 42 45

Some more cool features of map - imap
I Can use imap if the names of the input list/vector are

important.
I imap_*(x, f(x,y)) is equivalent to map2_*(x, names(x),

f(x,y))
I The type dfr indicates that we expect the function to output a

DataFrame Row, which are then bound row-wise into a single
dataframe.

library(dplyr)
midterm_grades <- c(Dan = 100, Derek = 20, Rob = 100)
grade_tbl <- imap_dfr(midterm_grades, ~tibble(name = .y, grade = .x, pass = .x >= 50))
grade_tbl

A tibble: 3 x 3
name grade pass
<chr> <dbl> <lgl>
1 Dan 100 TRUE
2 Derek 20 FALSE
3 Rob 100 TRUE

Some more cool features of map - map_if
I map_if allows for use of a predicate function (or a vector) to

only apply to certain values.
I It always returns a list (since the input and output could be of

different types).
str(map_if(midterm_grades, !grade_tbl$pass, ~NA_real_))

List of 3
$ Dan : num 100
$ Derek: num NA
$ Rob : num 100
str(map_if(midterm_grades, ~.x <= 50, ~"FAIL!!"))

List of 3
$ Dan : num 100
$ Derek: chr "FAIL!!"
$ Rob : num 100

Some more cool features of map - map_if

I modify_if is the same as map_if, but enforces that the type
is the same as the input

str(modify_if(midterm_grades, ~.x <= 50, ~NA_real_))

Named num [1:3] 100 NA 100
- attr(*, "names")= chr [1:3] "Dan" "Derek" "Rob"
try(str(modify_if(midterm_grades, ~.x <= 50, ~"FAIL!!")))

Error : Can't coerce element 1 from a character to a double

keep and discard

Only keep students who passed
keep(midterm_grades, ~.x >= 50)

Dan Rob
100 100
Remove students who passed to get a list of students on notice
discard(midterm_grades, grade_tbl$pass)

Derek
20

purrr in the wild - succinctly extract results from different
models

library(dplyr)
library(magrittr)
aic_bic_tbl <- list(

`Binary Poverty Indicator Interaction` = logis_res_census_binpoor,
`Poverty Rate Interaction` = logis_res_census,
`Income Interaction` = logis_res_census_inc_interact,
`No Income` = logis_res_census_noincome,
`No Poverty Rate` = logis_res_census_nopoor

) %>%
map2_dfr(names(.), ~tibble(model = .y, aic = AIC(.x), bic = BIC(.x))) %>%
arrange(aic)

aic_bic_tbl

I Example directly from my applied qual. (Could have used
imap_dfr!)

I purrr was designed by the same authors as dplyr and plays
nicely with other tidyverse functions (including the pipe
object %>%).

purrr in the wild - reduce to best model

best_model <- list(
`Binary Poverty Indicator Interaction` = logis_res_census_binpoor,
`Poverty Rate Interaction` = logis_res_census,
`Income Interaction` = logis_res_census_inc_interact,
`No Income` = logis_res_census_noincome,
`No Poverty Rate` = logis_res_census_nopoor

) %>%
reduce(~ifelse(BIC(.x) < BIC(.y), .y, .x))

I reduce function applies an operator function to reduce a
vector to one value

I Illustrating example, but in reality it would be more efficient to
use which.max(aic_bic_tbl$bic) (because it uses C code
and more efficient algorithm)

Conclusions

I Through the Functional Programming (FP) paradigm, purrr
allows for more concise and error-robust R coding patterns

I Allows complex operations to be composed from simple
building blocks by operating on user-specified functions

I Many, many more features are contained in purrr beyond
what was shown today

Further reading
I Tidyverse website (https://purrr.tidyverse.org/)
I “Iteration” chapter in R for Data Science

(https://r4ds.had.co.nz/iteration.html)
I Hadley’s plyr package which handles array and data.frame

inputs.

https://purrr.tidyverse.org/
https://r4ds.had.co.nz/iteration.html

Thank You!

	Thank You!

