
Speeding up R
using C/C++/Fortran

Computing Club Presentation
Simon Fontaine

tinyurl.com/UMfastR

Student Seminar
Department of Statistics, University of Michigan

December 3rd, 2020

https://tinyurl.com/UMfastR

Disclaimer
● I am not a specialist on the matter
● Based on my experience as a user
● Please share your experiences!

Things to remember from this talk
1. Using compiled code can be much faster
2. Trade-off between implementation time and execution time
3. It’s easier than you might think

Background

Why are we using R?
● Interactive mode
● Rich libraries
● Syntax
● Plug-and-play
● Dynamic typing
● Fast

○ User time
○ Computing time (?)

Why is R (somehow) fast?
● Built on top of C
● Linear algebra operations use LAPACK (written in Fortran)
● Most packages use C/C++/Fortran for main calculations

○ R wrapper for convenient interface

Example: the lm() function

Common packages using compiled code

C C++ Fortran
base, stats, ... base, stats, ...

data.table RStan randomForest

Matrix e1071 quantreg

rpart kernlab gam

nnet dplyr, tidyr mvtnorm

survival lme4 glmnet

splines gbm

mgcv xgboost

Prevalence of compiled code in R packages

Count % CRAN % Compiled

CRAN Packages 16780 100.0%

With compiled code 4071 24.3% 100.0%

Using Rcpp (C++) 2141 12.7% 56.6%

Other (C/Fortran) 1930 11.5% 43.4%

as of 12-02-2020

Why is R slow?
● Designed for usability, not performance

○ Interpreted, dynamically-typed, …

● Different code for same result have widely varying runtime
○ Non-trivial optimization

Performance, in Advanced R, 1st ed., Hadley Wickham http://adv-r.had.co.nz/Performance.html

http://adv-r.had.co.nz/Performance.html

Why bother?
● Implementation vs execution time

○ Spend more time on implementation to save on execution

● Repeated use of the same code
● Distribution of your code

○ Save other users’ time
○ Promote your work

Use case examples
● Solving optimization problems
● Iterative, recursive methods
● Sampling-based methods
● Complex data structures
● Evaluating a function many times
● ...

Typical structure: R wrapper function
1. [R] Process input

a. Deal with different cases, missing/default input
b. Some simple computations
c. Prepare types and variables

2. [C/C++/Fortran] Call the main routine
3. [R] Process output

a. Extract relevant variables
b. Some simple computations
c. Construct the R output

Examples

Example: Autocorrelation function

Language Time(s) Relative

C (stats package) 11.85 1.08

C++ 10.94 1.00

Fortran 11.06 1.02

R 129.60 11.85

● Vector of length 10M
● First 1K lags

Example: EM for Gaussian Mixture Model

Language Time(s) Relative

C++ 3.50 3.24

Fortran 1.08 1.00

R 76.2 70.56

● 1-dimensional
● Vector of length 1M
● 3 Components

Example: Cauchy density

Language Time(ms) Relative

C (stats package) 1080 2.56

C++ 422 1.00

Fortran 1250 2.96

R 717 1.70

● Vector of length 100M

Implementation

OLS using GD
Objective function

||Y-X𝛃||²/2n

Update

𝛃=𝛃+𝝶X’(Y-X𝛃)/n

JIT Rcpp
● Compile & use C++ code in a R Session
● Does not save the compiled code
● Good for simple or one-off uses
● Good for prototyping or development
● R functions:

○ Rcpp::evalCpp(string): evaluate a chunk of C++ code
○ Rcpp::cppFunction(string): compile and load a single C++ function
○ Rcpp::sourceCpp(file): compile and load a .cpp file

Fortran
● Implementation
● Compilation:

○ [Terminal] R CMD SHLIB file.f90
○ [R] system(“R CMD SHLIB file.f90”)

● Load:
○ [R] dyn.load("cauchy_f.so")

● Use:
○ .Fortran(“function”, args)

Rcpp package
● RStudio Project > Rcpp or RcppArmadillo
● Implementation

○ src/file.cpp
○ R/wrapper.R

● Build

Fortran package
● RStudio Project
● Implementation

○ src/file.f90
○ R/wrapper.R

● NAMESPACE
○ useDynLib(packageName)

● DESCRIPTION
○ NeedsCompilation: yes

● Build

Conclusion

Some guidelines
● Rcpp should be your first choice

○ Better interaction with R
○ Better support
○ Easier developpement workflow
○ Access to libraries

● Almost no reason to use pure C anymore
● Fortran can be slightly faster

○ When using only arithmetic/linear algebra
○ Clunkier workflow
○ Easier to learn, simpler syntax (?)

● Speed differences highly depend on your implementation
○ & compiler, architecture, etc.

References & further topics
Rcpp

● Extending R with C++: Motivation, Introduction and Examples - Part 1 by Dirk Eddelbuettel
○ [More advanced] Part 2

● Advanced R: Rewriting R code in C++ by Hadley Wickham
● Extending R with C++ by Dirk Eddelbuettel and James Joseph Balamuta
● RcppSugar: R-like behaviour in C++
● RcppEigen, RcppArmadillo: Linear algebra libraries

Fortran

● The Need for Speed Part 1: Building an R Package with Fortran (or C)
● The Need for Speed Part 2: C++ vs. Fortran vs. C
● Fortran and R – Speed Things Up
● Linking R and Fortran

R packages

● R packages by Hadley Wickham

https://www.youtube.com/watch?v=EXGhR-kyjRg
https://www.youtube.com/watch?v=FZ0LcJbxPF0
https://adv-r.hadley.nz/rcpp.html
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
http://dirk.eddelbuettel.com/code/rcpp/Rcpp-sugar.pdf
http://www.jstatsoft.org/v52/i05
http://dirk.eddelbuettel.com/code/rcpp.armadillo.html
https://www.avrahamadler.com/2018/12/09/the-need-for-speed-part-1-building-an-r-package-with-fortran/
https://www.avrahamadler.com/2018/12/23/the-need-for-speed-part-2-c-vs-fortran-vs-c/
https://www.r-bloggers.com/2014/04/fortran-and-r-speed-things-up/
https://msu.edu/~chench57/files/Linking_R_and_Fortran.pdf
https://r-pkgs.org/index.html

Thank you!

